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Abstract: Optical coherence tomography (OCT) has stimulated a wide range of medical image-
based diagnosis and treatment in fields such as cardiology and ophthalmology. Such applications
can be further facilitated by deep learning-based super-resolution technology, which improves the
capability of resolving morphological structures. However, existing deep learning-based method
only focuses on spatial distribution and disregards frequency fidelity in image reconstruction,
leading to a frequency bias. To overcome this limitation, we propose a frequency-aware super-
resolution framework that integrates three critical frequency-based modules (i.e., frequency
transformation, frequency skip connection, and frequency alignment) and frequency-based loss
function into a conditional generative adversarial network (cGAN). We conducted a large-scale
quantitative study from an existing coronary OCT dataset to demonstrate the superiority of our
proposed framework over existing deep learning frameworks. In addition, we confirmed the
generalizability of our framework by applying it to fish corneal images and rat retinal images,
demonstrating its capability to super-resolve morphological details in eye imaging.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT) is a non-invasive imaging modality that utilizes infrared
interferometry to generate depth-resolved reflectivity profile in real-time [1]. Over the last
decades, OCT has stimulated a wide range of medical image-based diagnosis and treatment
[2–4]. For example, in cardiology, OCT is considered a suitable coronary imaging modality to
assess plaques to ensure successful stent deployment [5]. Meanwhile, in ophthalmology, OCT
has become one of the prominent diagnostic tools for keratoconus [6], glaucoma [7], age-related
macular degeneration [8], retinopathy [9], diabetic retinopathy, and diabetic macular edemas [10]
in identifying layers in both anterior and posterior segments of the eye.

In both coronary imaging and eye imaging, high spatial resolutions from OCT, mostly spectral
domain OCT (SDOCT), are crucial to facilitate the application to either identify endothelial
cells or assess the thickness of corneal layers and retinal layers. However, such high resolution
comes at the cost of demanding optical design and data transmission/storage. Improvement of
resolution via upgrading light sources and other hardware designs is resource-intensive. The
hardware improvement also suffers from jittering and motion artifacts caused by sparse sampling.
On the contrary, software-based method could bypass the hardware upgrading issue and achieve
high image quality through computational methods.

In the realm of algorithmic super-resolution (SR), various digital signal processing and image
processing methods, have been developed to generate high-resolution (HR) OCT images from
low-resolution (LR) OCT scanning which is undersampled in spectral or/and spatial domain.
Conventionally, deconvolution [11,12], spectrum-shaping [13], and spectral estimation [14] have
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been proposed to optimize OCT images. However, the SR performance is recently boosted by
the introduction of deep learning (DL), especially the combination of convolution neural network
(CNN) and generative adversarial network (GAN).

Convolution neural network has been widely used for OCT image generation [15–22] to
enhance the image quality and denoise speckles [1,17,23–25]. However, previous CNN models
are not frequency-aware. In particular, CNN models such as multi-scale residual network
(MSRN), residual dense network (RDN), residual dense Unet (RDU), and Residual Channel
Attention Network (RCAN) have been utilized and compared recently in generating SR OCT
images [21]. Moreover, conditional generative adversarial network (cGAN) has been incorporated
in OCT SR research [17,26–29], featuring a discriminator design to examine the fidelity of the
generated SR image during the training process, thus enhancing the capability of generating HR
images.

However, the current DL research in generating SR OCT images focuses solely on the spatial
distribution of pixels in B-scans, without consideration of frequency information. The lack of
frequency-awareness poses limitation on SR performance in two aspects. Firstly, from 1-D
frequency perspective, SDOCT is physically measured in spectrum and reconstructed in spatial
domain. Considering frequency information along axial direction would increase the fidelity of
reconstruction. Secondly, from 2-D image processing perspective, current DL models exhibit
spectral bias, which is a learning bias towards low-frequency components [30,31]. As shown
in Fig. 1, DL algorithms induce frequency domain gaps in SR OCT images compared to the
reference HR images, as they fail to resemble the high-frequency components, such as edges

Fig. 1. Frequency domain gaps between the HR and the SR OCT images generated by
four CNN implementations (MSRN, RDN, RDU, RCAN). The spectrum is generated by
performing Fourier transform on the B-scan image. The high-frequency components of
images are generated by performing an inverse Fourier transform on the high-frequency
parts of the spectrum. Compared to the HR image, SR images generated by existing CNN
algorithms are biased to a limited spectrum region towards low-frequency. Using ours CNN
algorithm with frequency awareness (ours), the spectrum and high-frequency components of
the SR OCT image are closer to that of the original image. The scale bar represents 500µm.
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and textures of the coronary artery sample. High-frequency components preserve finer details
that are beneficial for medical imaging [32]. Recent works have used frequency information for
reconstructing OCTA and natural images [33,34]. However, current research does not address
the frequency domain gaps in the SR OCT images. Therefore, a DL framework with frequency
awareness is needed to reduce spectral bias and generate high-quality SR OCT images.

To this end, we develop a deep learning framework that is capable of super-resolving LR OCT
images with frequency awareness. In this manuscript, we propose a DL framework for OCT image
SR task with frequency awareness, which is capable of restoring high-frequency information via
model design and optimized loss function. We perform extensive experiments on an existing
human coronary dataset and quantitatively demonstrate that the proposed frequency-aware DL
framework super-resolves OCT images with superior quality and less frequency bias. We also
validate the spectral bias of the existing DL algorithms used in generating SR OCT images.
Furthermore, we perform qualitative analysis to confirm that our framework is capable of
generating SR OCT images for corneal imaging and retinal imaging.

2. Methods

2.1. Overall framework

The design of our frequency-aware framework is shown in Fig. 2. Our framework consists of
a generator (G) and a discriminator (D). Generator G translates a LR image to a SR image.
Discriminator D classifies whether or not the generated image is realistic. Wavelet transformation
is utilized to decompose feature maps Fi into different frequency components; frequency skip
connection (FSC) is used to prevent the loss of high-frequency information; high-frequency
alignment (HFA) is used to guide the G for generating frequency information [35].

Fig. 2. The design of the proposed frequency-aware framework for OCT image super-
resolution. The proposed model utilizes wavelet transformation, frequency skip connection,
and high-frequency alignment to facilitate frequency information for super-resolving OCT
images.
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2.2. Model design

2.2.1. Wavelet transformation

We adopt Haar wavelet for decomposing feature maps of the i-th layer Fi into different components.
Haar wavelet consists of two mirror operations: wavelet pooling and wavelet unpooling. The
wavelet pooling converts images into the wavelet domain, and the wavelet unpooling inversely
reconstructs frequency components into the spatial domain. During wavelet pooling, Fi is
convolved with four distinct filters: LLT , LHT , HLT , and HHT , where L and H are low and high
pass filters respectively (LT = 1√

2
[1, 1], HT = 1√

2
[−1, 1]). The low pass filter (LLT ) provides

general shapes and outlines in Fi; the high pass filters (LHT , HLT , HHT ) provide more fine details
such as segments, edges, and contrasts. An illustration of wavelet transformation is shown in
Fig. 2.

2.2.2. Frequency skip connection

To prevent the loss of high-frequency information from Fi to Fi+1, FSC is used in generator G.
The FSC in G is defined as:

F
′

i+1 = Fi+1 + Unpooling(LLi
G, LHi

G, HLi
G, HHi

G) (1)

After the frequency skip connection, feature map F′

i+1 is calculated with the frequency
information of F′

i is preserved through this process.

2.2.3. High-frequency alignment

High-frequency alignment (HFA) provides G with a self-supervised learning scheme using
frequency information acquired in D. For Fi in G, we acquire LLi

G, LHi
G, HLi

G, and HHi
G. The

combination of high-frequency components in G is defined by: HFi
G = LHi

G + HLi
G + HHi

G.
Similarly, high-frequency components in D can be acquired by HFi

D = LHi
D + HLi

D + HHi
D. The

HFi
D can be used as the self-supervision constraint to train G.

2.3. Loss function

In the proposed frequency-aware framework, we incorporate a modified focal frequency loss
(FFL) that quantifies the distance between HR and SR OCT images in the frequency domain [36].
The FFL is defined as:

FFL =
1

MN

M−1∑︂
u=0

N−1∑︂
v=0

w(u, v)|FSR(u, v) − FHR(u, v)|2 (2)

The FSR and FHR denote the frequency representation of SR and HR OCT images acquired
by Discrete Fourier transform (DFT); the M and N represent the image size; the w(u, v) is the
spectrum weight matrix that is defined by:

w(u, v) = |FSR(u, v) − FHR(u, v)|α (3)

where α is the scaling factor for flexibility (set to 1 in our experiments). In [36], the FSR and
FHR are acquired by 2D DFT. However, the OCT images are acquired by 1D A-line scanning.
Thus, we modify the FFL by acquiring FSR and FHR using 1D DFT. The original FFL is denoted
as FFL2D and the modified FFL is denoted as FFL1D. The loss function L of the proposed
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frequency-aware model is defined as:

L(G, D, L1, FFL1D, FFL2D, Lalign) =

Ladv(G, D) + αL1(SR, HR) + βFFL1D(SR, HR)
+ βFFL2D(SR, HR) + γLalign(G, D)

(4)

The Ladv stands for the adversarial loss, which is defined by probabilities of the discriminator
over generated images:

Ladv = −logD(G(LR)) (5)

The L1 stands for the mean absolute error, which is defined by the pixel difference between SR
and HR images:

LL1 = |SR − HR| (6)

The Lalign stands for the distance of high-frequency information between the HR and SR OCT
images:

Lalign =

3∑︂
i=1

|HFi
D − HFi

G | (7)

We aim to solve the following minmax optimization problem:

G∗ = arg min max L(G, D, L1, FFL1D, FFL2D, Lalign) (8)

3. Results

3.1. Data collection

We perform a large-scale quantitative analysis on an existing coronary image dataset. The dataset
was imaged using a commercial OCT system (Thorlabs Ganymede, Newton, NJ) [21]. The
specimens were obtained in compliance with ethical guidelines and regulations set forth by
Institutional Review Board (IRB), with de-identification to ensure the privacy of the subjects. A
total of 2996 OCT images were obtained from 23 specimens, with a depth of 2.56 mm and a
pixel size of 2 µm × 2 µm within a B-scan. The width of the images varied from 2 mm to 4 mm
depending on the size of the specimen.

In addition to the large-scale coronary dataset, we also confirmed the generalizability of
applying the proposed method to two small dataset: one from ex vivo fish corneal and the other
from in vivo rat retina. Two fish corneal OCT images were obtained from the same Thorlab OCT
images following the same imaging protocol as coronary imaging. Fifty rat retinal images were
obtained from a Heidelberg Spectralis SDOCT system. The system has an axial resolution of 7
µm and a lateral resolution of 14 µm. The maximum field of view is 9 mm x 9mm. Animal
imaging procedure was in accordance with protocols approved by the Institutional Animal Care
and Use Committee at the Stevens Institute of Technology, and with the principles embodied in
the statement on the use of animals in ophthalmic and vision research adopted by the Association
for Research in Vision and Ophthalmology. The details of the experimental procedure are
described in [37].

3.2. Experimental setup

The OCT LR images from coronary images and eye images were generated by cropping the
spectrum data. The optical resolution of OCT systems will be decreased by reducing the
bandwidth of the spectrum. We used 1

2 , 1
3 , and 1

4 (denoted as X2, X3, and X4 respectively) of the
raw spectrum data by central cropping. We used Hanning window to filter the raw spectrum
data. Next, the filtered spectrum data were processed by FFT to get complex OCT data. Then,
the norm of the complex OCT data was converted to dB scale. The background subtraction was
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performed to remove noises in the OCT data. The LR OCT images were used as the inputs for
the DL networks. The OCT images were randomly shuffled into five folds for cross-validation.
The factors α, β, and γ in Eq. (4) are set to 10, 1, and 1 respectively.

3.3. Network implementation

We implemented our frequency-aware model using Pytorch. For downsampling layers, we used
2D convolutional layers with a stride of 2 followed by the Instance normalization layer and
LeakyRelu activation layer with a negative slope of 0.2. For the upsampling layers, we used
2D transpose convolutional with a stride of 2 followed by the same Instance normalization
and LeakyRelu activation. We used 16 residual blocks as the bottleneck, each containing 2
convolutional layers. For the implementation of previous DL algorithms (MSRN, RDN, RDU,
RCAN), we were inspired by the designs in [21]. We implemented the existing DL algorithms in
GAN architecture.

3.4. Training details

The image intensities were normalized to a range of [0,1]. The training protocol was performed
five times for cross-fold validation. We randomly sampled 16 non-overlapping LR patches of
size 64 x 64 pixels as input during training. The normalized images were augmented through
random flipping to prevent overfitting. The optimization routine was carried out using the Adam
algorithm, with an initial learning rate of 10−4. A total of 200 epochs were executed to ensure
convergence. The training process utilized one RTX A6000 GPU. Each training iteration on a
single data fold consumed approximately 2 hours.

3.5. Evaluation metrics

We used peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [38] to measure the
quality of SR images. The PSNR calculates pixel-wise differences between the HR image and
the SR image, which is defined as:

PSNR = 10 log10(
2552

MSE
) (9)

The MSE represents the cumulative squared error between the HR and SR OCT images:

MSE =
∑︁M

m=1
∑︁N

n=1 |HR(m, n) − SR(m, n)|2

M ∗ N
(10)

The SSIM focuses on structural similarity between the HR image and the SR image, which is
defined as:

SSIM =
(2µHRµSR + c1)(2σHR,SR + c2)

(µ2
HR + µ

2
SR + c1)(σ

2
HR + σ

2
SR + c2)

(11)

where µHR is the pixel mean of the HR image; µSR is the pixel mean of the SR image; σHR
is the variance of HR; σSR is the variance of SR; σHR,SR is the covariance of HR and SR;
c1 = (0.01 ∗ 255)2 and c2 = (0.03 ∗ 255)2 which are two variables to stabilize the division with
weak denominator.

To evaluate the frequency difference, we define a frequency-level metric, namely Scaled
Frequency Distance (SFD), which is defined as:

SFD =
M−1∑︂

u

N−1∑︂
v

|︁|︁|︁|︁ |FSR(u, v)| − |FHR(u, v)|
|FHR(u, v)|

|︁|︁|︁|︁ (12)

To evaluate the ability of our framework to preserve the edge details in the SR OCT images, we
calculate the edge preservation index (EPI) of the region of interest (ROI). For EPI, 1 corresponds
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to the ideal situation which means perfect edge preservation.

EPI =
∑︁M

m=1
∑︁N

n=1((HR(m, n) − mean(HR)) ∗ (SR(m, n) − mean(SR)))√︂∑︁M
m=1

∑︁N
n=1(HR(m, n) − mean(HR))2 ∗

∑︁M
m=1

∑︁N
n=1(SR(m, n) − mean(SR))2

(13)

3.6. Analysis on spectral bias

We perform frequency analysis to evaluate the spectral bias of our frequency-aware model and
other DL algorithms. We apply 2D DFT to the HR and SR OCT images, after which we average
the logarithm of the intensities for each A-line and plot the intensity values over the pixels. The
frequency analysis is carried out by averaging the spectrum of the SR OCT images. The results
are reported in Fig. 3. As shown in Fig. 3 (a), our frequency-aware model generates SR images
with averaged spectrums that are similar to the HR images. The summed intensities for pixels, as
shown in Fig. 3 (b), confirm our frequency-aware model are less biased in spectrum distribution
compared with other DL algorithms. On the other hand, existing DL algorithms generate SR
OCT images with spectral bias in an unstable manner, as confirmed by Fig. 3.
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Fig. 3. Frequency analysis of the SR OCT images generated from LR OCT data acquired
using factors of X2, X3, and X4. Compared to existing methods, our frequency-aware model
is capable of super-resolving OCT images with less spectrum bias, which is confirmed by
frequency analysis.

3.7. Quantitative analysis on super-resolution performance

We compare the quantitative performance of our frequency-aware model to other DL algorithms.
As shown in Table 1, our frequency-aware model generates SR OCT images with better PSNR,
SSIM, and SFD scores compared to other deep learning algorithms. Moreover, the standard
deviation results show that our framework consistently outperforms existing methods. Together
with Fig. 3, we confirm our frequency-aware model generates SR OCT images with better spatial
and frequency properties compared to other DL algorithms.

In Fig. 4, a case of super-resolving an LR OCT image of a stent within the coronary artery
is demonstrated. Coronary stent placement is an established treatment for CAD [39]. Imaging
microstructures and tissues adjacent to stent struts are crucial in the clinic. It is critical to provide
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Table 1. PSNR, SSIM, and SFD results of OCT images reconstructed by MSRN, RDU, RDN, RCAN,
and our frequency-aware model. Red indicates the best performance. All results are averaged

based on five-fold cross-validation. We report the mean value ± standard deviation.

Methods

Metrics X2 X3 X4

PSNR↑ SSIM↑ SFD↓ PSNR↑ SSIM↑ SFD↓ PSNR↑ SSIM↑ SFD↓

MSRN 30.2094±0.1256 0.8484±0.0030 0.3765±0.0022 24.2997±0.1898 0.4829±0.0100 0.8761±0.0578 23.6034±0.6719 0.4216±0.0250 0.7565±0.0247

RDU 29.1010±0.4972 0.7950±0.0370 0.6737±0.0473 23.8777±0.3115 0.4628±0.0080 0.8376±0.0124 23.5086±0.4143 0.4246±0.0230 0.9369±0.0626

RDN 30.3321±0.2031 0.8496±0.0050 0.3503±0.0090 23.7528±0.3553 0.4635±0.0160 0.6560±0.0682 23.7746±0.8651 0.4371±0.0280 0.6977±0.0456

RCAN 29.5280±0.7440 0.8261±0.0249 0.3918±0.0173 23.5904±0.5528 0.4596±0.0216 0.7638±0.0912 22.2740±0.4748 0.3462±0.0134 0.8121±0.0524

Ours 30.4713±0.2783 0.8519±0.0020 0.3273±0.0020 25.7500±0.0940 0.5904±0.0030 0.4669±0.0014 24.2867±0.0760 0.4424±0.0090 0.5287±0.0081

accurate morphological information on interactions between the stent and the vessel wall, for the
purpose of evaluating the placement as well as the biocompatibility of the stent. The edges of the
stent are considered to be high-frequency information in the OCT images, which are challenging
to reconstruct for previous DL algorithms. As shown in Fig. 4, previous DL algorithms generate
blurred edges of the stent. Moreover, existing DL algorithms lead to artifacts on the interaction
between the stent and tissue, as shown in Fig. 4 (e), (f), (g). With our frequency-aware model, the
edges of the stent are resolved with detailed information that is similar to that of the HR image.
The EPI scores also show that the SR OCT image generated by our framework better preserves
the edges.

Fig. 4. Generating SR OCT images of stent structure from LR image acquired using a factor
of X4. The corresponding histology image is attached. Our model resolves the boundary
between the stent and tissue with better details due to its frequency-awareness design. ROIs
are marked by red rectangles. The EPI score of the ROIs is calculated and displayed. The
scale bar represents 100µm.
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In Fig. 5, we demonstrate a case of super-resolving an LR OCT image of suspicious accumulation
of macrophages. Macrophages play a critical role in both the development and rupture of
atherosclerotic plaques [40], which are thus important for the diagnosis of CAD. OCT has been
demonstrated to be a viable technique for visualizing the accumulation of macrophages in the
human coronary artery. Macrophages appear as ’bright spots’ in OCT images [41], which are
high-frequency information due to their sharp contrast with neighboring tissues. As shown in red
ROIs in Fig. 5, previous DL algorithms generate SR images with blurred macrophages, which
will deteriorate the clinical diagnosis procedures. In contrast, our frequency-aware framework
generates SR OCT images with clear macrophages. Thus, our frequency-aware model is capable
of providing SR OCT images for human coronary samples with clinical meaningness. Also, we
highlight edge regions in the orange ROIs. The EPI score suggests that our framework better
preserves the edges in the SR OCT image.

Fig. 5. Generating SR OCT image of suspicious macrophage regions from LR image
acquired using a factor of X4. The amplitude of intensities of HR and SR images is attached.
Our model resolves the accumulations of macrophages without blurring effects. ROIs
containing the macrophage accumulations are marked by —-red rectangles. ROIs of edge
regions are marked by orange rectangles. The EPI score of the ROIs is calculated and
displayed. The scale bar represents 100µm.

3.8. Number of paired layers in model design

As shown in Fig. 2, we use three pairs of upsampling and downsampling layers in model design.
As a comparative study, we design two variations of our framework, which use two and four
pairs of upsampling and downsampling layers. We evaluate the performance of variations of our
framework on the first data fold. The results are reported in Table 2. As shown in the table, our
framework with three pairs of layers provides the best performance. With two pairs of layers, the
framework may suffer from a lack of trainable parameters for performing the SR task, which leads
to the sub-optimal performance. With four pairs of layers, the performance of the framework may
still be limited because of the information flow bottleneck [42] in the UNet-like structures. On
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Table 2. PSNR, SSIM, and SFD results of OCT images reconstructed
by variations of our framework. Red indicates the best performance.

The LR OCT images are generated using a factor of X2.

# of layers

Metrics
PSNR↑ SSIM↑ SFD↓

2 30.1466 0.8406 0.3417

3 30.5339 0.8521 0.3153

4 30.0359 0.8352 0.3544

the other hand, the three pairs of upsampling/downsampling layers have been used in UNet-like
structures relating to OCT images [43].

3.9. Weights of loss function

We further discuss the impact of three parameters, α, β, and γ in Eq. (4), on the performance.
We adopt α = 10, β = 1, and γ = 1 as the baseline. We also change the α to 100 and 1; β to 10
and 0.1; γ to 10 and 0.1. We evaluate the performance of the framework using loss function with
different weights on the first data fold. The results are reported in Table 3. The results show that
the baseline achieves the optimal performance, with two metrics of the best performance and one
metric of the second-best performance.

Table 3. PSNR, SSIM, and SFD results of OCT images reconstructed
by loss function with different weights. Red indicates the best

performance. Blue indicates the second-best performance. The LR
OCT images are generated using a factor of X2.

Weights

Metrics
PSNR↑ SSIM↑ SFD↓

α = 10, β = 1, γ = 1 30.5339 0.8521 0.3153

α = 100, β = 1, γ = 1 30.5726 0.8468 0.3535

α = 1, β = 1, γ = 1 21.5339 0.6636 0.3628

α = 10, β = 10, γ = 1 30.0508 0.8319 0.3720

α = 10, β = 0.1, γ = 1 30.0283 0.8321 0.3441

α = 10, β = 1, γ = 10 29.5064 0.8166 0.3691

α = 10, β = 1, γ = 0.1 29.2901 0.8278 0.3382

3.10. Application to super-resolve anterior segments of fish eye

Based on the setup in coronary imaging, we perform additional experiments on fish cornea using
trained frequency-aware framework from previous section. We acquired the fish corneal OCT
images using the same OCT system and imaging settings as the coronary dataset. We acquired
three volumes of left and right fish eyes. Three representative OCT B-scans are used for the
qualitative studies. The qualitative analysis of SR OCT images of fish corneal is shown in Fig. 6.
In particular, the dash circle in the first panel shows the alignment of corneal stroma is better
resolved after super-resolving. The dash circle in the second panel highlights the iris region that
is underneath the corneal regions. The dash circle in the third panel resolves the bownman’s layer
in corneal region. Overall, our frequency-aware framework is capable of generating SR OCT
fish corneal images with sharper and finer textures. Without retraining, our frequency-aware
framework has the potential to be transferrable to OCT corneal images obtained from the same
OCT system.



Research Article Vol. 14, No. 10 / 1 Oct 2023 / Biomedical Optics Express 5158

Fig. 6. Generating SR OCT images of anterior segments in fish eyes from LR images
acquired using a factor of X3. ROIs are marked by red rectangles. The textures are
highlighted by the dashed cycles. The scale bar represents 500µm.

Fig. 7. Generating SR OCT images of posterior segments in rat eyes from LR images
acquired using a factor of X3. ROIs are marked by red rectangles. The textures are
highlighted by the white arrows. The scale bar represents 500µm.

3.11. Application to super-resolve posterior segments of rat eye

We also conduct experiments to imaging posterior segments from animal model. A pigmented
Long Evans rat from Charles River is used for OCT imaging. Retinal imaging requires a different
optical design from benchtop OCT used in coronary imaging and corneal imaging. The OCT
images were acquired using Heidelberg Spectralis system. We retrained the frequency-aware
framework using 96% of the images and used the rest of the images for testing. The SR OCT
images of rat eyes generated by our frequency-aware framework are shown in Fig. 7. In the first
panel, the SR OCT image delineates the boundary around optical disc; and in the second panel,
the SR OCT image better resolves the layer boundary within retinal regions (for example, inner
nuclear layers). This experiment shows that our proposed frequency-aware framework, with
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adequate retraining, has the potential to be generalizable to OCT retinal images obtained from
different OCT systems.

4. Discussion

To the best of our knowledge, our framework is the first study in OCT community to propose a
frequency-aware framework for super-resolution, which addresses the spectral bias in generated
images. We design the proposed framework by modifying the convolution model architecture and
loss functions to improve the frequency-aware capability. This is based on our investigation on
the spectral bias towards the low-frequency components in the spectrum in existing studies. Our
frequency-aware model generates SR OCT images with less spectral bias and better performance
compared to existing framework. Our frequency-aware model is capable of generating SR OCT
images with clinical meaningness, which is confirmed by qualitative analysis. Compared to recent
research [33,34] which exploits frequency information for generating OCTA and natural images,
our work exploits frequency information to reduce the spectral bias in SR OCT images, which is
different from the OCTA and natural images. Also, our unified framework is differentiated from
[29], which exploits frequency information of OCT images using multiple DL networks without
addressing the spectral bias.

Another contribution lies in generalizability. Our preliminary study indicates great potential
to be applied to multiple tissue types. We perform qualitative experiments on additional fish
eye and rat eye dataset. Without retraining, our frequency-aware framework resolves anterior
segments of fish eye, including corneal stroma, iris region, and downman’s layer, acquired from
the same OCT system. With adequate retraining, our frequency-aware framework is capable of
resolving LR OCT images acquired from different systems. From the qualitative analysis of a rat
eye dataset acquired from a different OCT system, we resolve the boundary around the optical
disc and within retinal regions, with adequate retraining.

As an exploratory study on methodology development, this study, especially the eye imaging,
is based on healthy samples. In the future, we plan to validate our super-resolution framework on
pathological animal models to examine how much the improved resolution could facilitate the
diagnosis and treatment in ophthalmology. Moreover, in addition to SDOCT, we plan to validate
our super-resolution framework on swept-source OCT system in which the signal is also acquired
in spectral domain. Also, we will extend and optimize the proposed framework for multiple tasks,
such as OCT image denoising, classification, and segmentation.

5. Conclusion

In this paper, we investigate the spectral bias of existing DL algorithms when generating SR OCT
images. To mitigate the spectral bias, we develop a frequency-aware model that combines cGAN
with frequency loss to super-resolve LR OCT images. Compared to existing DL algorithms, our
approach produces SR OCT images with less spectral bias, resulting in better preservation of
textures. Additionally, our method generates SR coronary OCT images of superior quality, with
higher PSNR and SSIM scores, as well as lower SFD scores. Our frequency-aware framework
demonstrates the capability of generating SR OCT coronary images to provide better diagnosis
and treatment. Moreover, our study also indicates the ability of the proposed framework to be
generalized to corneal imaging and retinal imaging.
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